
Privacy-Preserving Pattern Matching over Encrypted
Genetic Data in Cloud Computing

Bing Wang∗ Wei Song∗† Wenjing Lou∗ Y. Thomas Hou∗
∗Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

†Wuhan University, Wuhan, Hubei, China

Abstract—Personalized medicine performs diagnoses and treat-
ments according to the DNA information of the patients. The
new paradigm will change the health care model in the future. A
doctor will perform the DNA sequence matching instead of the
regular clinical laboratory tests to diagnose and medicate the
diseases. Additionally, with the help of the affordable personal
genomics services such as 23andMe, personalized medicine will
be applied to a great population. Cloud computing will be the
perfect computing model as the volume of the DNA data and
the computation over it are often immense. However, due to
the sensitivity, the DNA data should be encrypted before being
outsourced into the cloud. In this paper, we start from a practical
system model of the personalize medicine and present a solution
for the secure DNA sequence matching problem in cloud comput-
ing. Comparing with the existing solutions, our scheme protects
the DNA data privacy as well as the search pattern to provide
a better privacy guarantee. We have proved that our scheme
is secure under the well-defined cryptographic assumption, i.e.,
the sub-group decision assumption over a bilinear group. Unlike
the existing interactive schemes, our scheme requires only one
round of communication, which is critical in practical application
scenarios. We also carry out a simulation study using the real-
world DNA data to evaluate the performance of our scheme.
The simulation results show that the computation overhead for
real world problems is practical, and the communication cost
is small. Furthermore, our scheme is not limited to the genome
matching problem but it applies to general privacy preserving
pattern matching problems which is widely used in real world.

I. INTRODUCTION

Personalized medicine has been gaining popularity and is
recognized as the health care model in the future. In this
model, genetic testings are employed for selecting effective
and optimal treatment based on the context of a patient’s
genetic information, such as DNA sequence, molecular, and
cellular analysis. Compared with the traditional practice which
takes a “one-size-fits-all” approach, personalized medicine is
moving us to more precise, predictable and powerful health
care which is customized for each patients. According to
NIH, genetic testing, which could be used as diagnosis test-
ing, prenatal testing, or predictive testing, is to search the
existence of certain gene mutations over a patient’s genetic
data. For instance, certain mutations in the genes BRCA1
and BRCA2 are related to high risk of breast cancer. By
testing the existence of those gene mutations in a patient’s
DNA, early intervention measures can be taken to prevent
breast cancer from development. Due to the massive storage
and computation requirement, many genetic services including

personalized medicine are outsourced to or provided by third-
party service providers, for example, Google Genomic1.

While it is promising to have customized health care for
each individual, there are many security and privacy risks
which could thwart its wide adoption in cloud computing.
The main concern is whether the patient’s genetic information
is exposed to unauthorized parties during testings, especially
when the testings are performed by third-parties such as cloud
providers. In reality, personal genomics companies enforce
their privacy policies mainly relying on legislation such as
Health Insurance Portability and Accountability Act (HIPAA).
However, such an approach is ineffective against information
leakage caused by system failures or hackers. On the other
hand, de-identification, which removes or marks personal
identifiers, is another widely adopted privacy preserving tech-
nique. Unfortunately, research works (e.g. [1], [2]) have found
that attackers can re-identify participants using genetic data
alongside with some public records.

A feasible and promising approach to protect the genetic
data privacy is to encrypt the data before outsourcing it
to the cloud. A challenging problem is to perform genetic
test over the encrypted data. An authorized party, such as
a doctor, should be able to perform genetic testing over the
encrypted DNA data while no information about the patient
should be leaked to cloud providers except the algorithm’s
output. Although the fully homomorphic encryption (FHE) [3]
is a solution to the problem, its efficiency is still far from
practical. Searchable encryption which builds secure indexes
based on keywords is not applicable either because there are no
explicitly given keywords in DNA sequences. Existing secure
pattern matching schemes [4]–[8] are interactive protocols.
The protocols assume the authorized party is remaining online
during the entire testing process, which imposes usability
and scalability issues. On the other hand, the communication
overhead incurred by the interaction limits the practicability
of those schemes. Another scheme [9] has limited privacy
guarantee due to the leakage of the search pattern.

In this paper, we aim to study the privacy-preserving ge-
netic testing in cloud computing and we focus ourselves on
communication efficiency and strong privacy guarantee. To
achieve genetic testing over the encrypted data while providing
strong privacy guarantee, we adopt predicate encryption (PE)
as the main cryptographic primitive. Using PE, the decryption

1https://cloud.google.com/genomics/

of the ciphertext depends on not only the secret key but
also a pre-defined function. However, to integrate PE into a
privacy-preserving sequence matching scheme is nontrivial.
To design a secure and well-functioning scheme, there are
three important design challenges, i.e., 1) data structures to
support sequence matching over encrypted data, 2) security
and privacy mechanism to prevent information leakages such
as search pattern and result privacy, and 3) protocol design
to achieve efficient communication. To this end, we make the
following contributions.
• We propose a novel scheme for privacy-preserving ge-

netic testing in cloud computing. To address the genetic
sequence matching challenge, we modified the predi-
cate encryption (PE) scheme in [10] to achieve approx-
imate sequence (wildcard-based) matching for genetic
sequences. In particular, the genetic sequence is encrypted
with PE and an authorized party such as a doctor can
submit a genetic testing request with a secure query
sequence pattern to the cloud.

• Our scheme is provably secure under the well-defined
subgroup decision assumption over a bilinear group.
To provide strong privacy guarantee, search pattern and
testing results are protected from the cloud server. In
addition, the authorized party only learns the information
which the patient allows. We utilize suffix tree structure
to pre-process the genetic sequence so that the sequence
matching computation can be done in a single round of
communication.

• We thoroughly analyze of the complexity of the different
approaches for the secure DNA sequence matching prob-
lem. We then compare our scheme with them to illustrate
the strength of our scheme in practice. We further perform
a simulation study using the public available DNA data.
The results show that the computation overhead for the
problem is reasonable, and the communication cost is
small.

The remaining of the paper is organized as follows. In
Section II, we review the literature of the related work. We
formulate our problem in Section III. Our secure sequence
matching scheme is presented in Section IV. We analyze the
complexity of our scheme and compare it with the existing
schemes in Section V. Finally, we conclude our paper in
Section VI.

II. RELATED WORK

Privacy-preserving computation over genetic data is always
considered under two different system models. The first model
assumes each party possesses its data and would like to
compute certain functions over its input along with other
parties’ data. Secure multi-party computation is the main
technique used under the first model. The second model is
the secure outsourcing of computation model. In this model,
the genetic data is stored in a semi-trusted party, usually in a
cloud. The computation task is mainly carried out by the cloud
server over encrypted data. We review the related works under
each system model respectively.

A. Secure multi-party computation model

Atallah and Li [4] proposed a privacy-preserving protocol
to compute the edit distance between two sequences based
on dynamic programming. The protocol requires two non-
colluding servers, each of them possessing one input sequence,
to engage an interactive process. A secure look-up protocol is
used to exchange the computation results of the servers in each
iteration. Because the number of the iterations is the product
of the lengths of the two input sequences, the computation,
and the communication overhead are considerable. Jha et al.
[6] improve the computation efficiency of [4]. Yet, it shares
the same communication complexity since it is an iterative
protocol as well. It is worth mentioning that these schemes can
be applied to other problems that dynamic programming could
solve. In [7], Wang et al. proposed a distributed framework for
privacy-preserving genetic computing, which applies program
specialization to partitioning genetic computation to different
sensitivity levels. The expensive computation involving secure
multi-party computation is only performed for the higher
sensitivity level data. However, with our current knowledge,
it is unclear whether the “insensitive” DNA data will be
important in the future. Therefore, leaking these DNA data is
not a satisfying practice. Troncoso-Pastoriza et al. [5] proposed
a protocol to calculate edit distance with an encrypted input
sequence through finite state machine (FSM). In their scheme,
the server possesses the FSM for the target DNA sequence
while the input of the FSM is the client’s query sequence. The
server and the client participate in an interactive protocol using
oblivious transfer protocols to calculate the state transition
of the FSM. Although the payload of each communication
is smaller compared to the dynamic programming based
approaches, the communication overhead is still considerable
because the number of the iterations is a linear function of the
lengths of the input sequence. It is worth mentioning that the
computation used to generate the FSM can also be huge when
the size of the sequence grows. Therefore, the poor scalability
limits the usability of those schemes. In [8], Blanton and Alias-
gari proposed a scheme which outsources the computation
and the communication of [5] to multiple servers to improve
efficiency in practice. But it is still based on an interactive
algorithm which requires multiple rounds of communication.
Wang et al. [11] proposed an privacy-preserving protocol to
estimate the edit distance between two genome sequence. They
estimate the edit distance by transforming the edit distance
computation problem to the set intersection size approximation
problem. The computation of the set intersection size is done
through multi-party computation. Their scheme is extremely
efficient as the edit distance computation time for two whole
genome sequences can be finished in seconds with a relatively
small error.

B. Secure outsourcing of computation model

Under the secure outsourcing of computation model, the
cloud server is always considered as an honest-but-curious
adversary. Therefore, the security objective is to perform

certain kinds of computation in cloud without leaking private
information.

Lu et al. [12] proposed a secure outsourcing scheme for
genome-wide association study (GWAS). The GWAS aims to
discover the association between gene mutations and certain
diseases. The major computation of the GWAS is based on
the statistic information of the genetic data. In [12], the
computation is performed over the encrypted statistic in the
cloud to protect the data privacy. Barman et al. constructed a
privacy-preserving computation scheme to calculate the health
risk based on the known association between gene mutations
and the diseases. Given a patient’s gene mutation information
as a vector and the known association mapping with a weight
between a gene mutation and a disease, the cloud computes
the aggregated risk. Chen et al. [13] proposed a secure DNA
alignment scheme utilizing a hybrid cloud. The scheme first
locates an approximated location by comparing the ciphertext
of the genetic data in a public cloud. Then the alignment is
performed in a private cloud using the plaintext of the genetic
data. Baldi et al. [14] implement the secure paternity tests
utilizing the private set intersection (PSI) technique. Those
applications work on the short tandem repeats which are the
number of the repeats of a specific nucleotides pattern. A
secure index is built based on the genetic signatures, i.e., the
short tandem, and the cloud calculates the occurrence for a
specific short tandem over the encrypted genetic data. Ayday
et al. [15] proposed a private DNA sequence retrieving scheme
based on the order-preserving encryption. The scheme builds
an index using the sequence position information instead of
the genetic sequence in the SAM file. Kantarcioglu et al. [16]
proposed a scheme to securely query an SNP database using
an additive homomorphic encryption scheme. Those schemes
focus on a specific application that involves little or no genetic
sequence data, and thus, have different challenges compared
to our problem.

Very recently, Chase and Shen [9] proposed a symmetric
searchable encryption scheme supporting subsequence match-
ing. Similar to our approach, their construction is based on
suffix tree. However, the search pattern is leaked to the
cloud because deterministic encryption algorithm is used in
their scheme. Also, approximate sequence matching is not
supported.

Secure DNA sequence matching is also related to searchable
encryption which allows the user to query the encrypted docu-
ments with the encrypted keyword(s). A considerable amount
of the searchable encryption schemes (e.g. [17]–[21]) has
been proposed. The core technique of searchable encryption
is to build a secure index for the keywords extracted from a
document set. However, there is no explicitly given keyword
in genetic sequence data. A possible solution is to treat mean-
ingful subsequences as keywords. However, the amount of the
possible subsequence is huge as the DNA sequence consists
of millions of base pairs. On the other hand, subsequences
with various length are used in the DNA sequence matching
problem. Therefore, the searchable encryption schemes cannot
be directly applied to the secure DNA sequence matching

Fig. 1. System model of personalized medicine in cloud computing.

problem.

III. PROBLEM FORMULATION

Human DNA contains important genetic instructions that
define and function each. According to NIH, genetic testing
is mainly used to search for abnormal gene mutations that
lead to genetic disorder. In medical practice, searching the
existence of the known gene mutations that relate to certain
genetic diseases is one of the important methods to perform
diagnosis testings.

A. System model
We consider a personalized medicine model where there are

four entities in the system. The provider such as a laboratory or
a personal genomics service company sequences the patient’s
DNA from cell samples. The DNA sequence is then encrypted
and outsourced into the cloud. When an authorized party,
such as a doctor, would like to perform a genetic testing for
the patient, he/she can submit a test request to the cloud and
gets the result back. To ensure the patient privacy, the testing
sequence, i.e., a DNA sequence pattern, should be encrypted
as well. We denote the encrypted request as trapdoor. The
proposed system model is shown in Fig. 1. Based on the
system model, we define secure sequence matching as follows.

Definition 1: A secure sequence matching (SSM) is a
collection of five polynomial time algorithms, i.e., Setup,
DataEnc, ReqEnc, Search, and Assert such that
• (kS , kT) ← Setup(1λ): is a key generation algorithm

run by the provider. It takes a security parameter λ and
outputs a data encryption key kS and a request encryption
key kT .

• (S̃,ΩS)← DataEnc(kS ,S): is an algorithm run by the
provider. It takes kS and a sequence S, and outputs the
ciphertext S̃ with an assertion token ΩS .

• (T,ΩT)← ReqEnc(kT ,∆): is a probabilistic algorithm
run by the patient. It takes kT and a query sequence ∆;
outputs an encrypted query T and the assertion token ΩT .

• R ← Search(S̃, T): is a probabilistic algorithm run by
the cloud. It takes S̃ and T , and outputs the encrypted
search result R.

• 1 or ⊥← Assert(ΩS ,ΩT , R): is a deterministic al-
gorithm run by the authorized party. It takes both the
assertion tokens and R. Output 1 if the query ∆ is a
subsequence of the sequence S; otherwise, it outputs ⊥.

B. Security model

We assume secure communication channels are used to
defend against the outside attacker. Therefore, we focus on
the possible inside privacy leakage of the system.

Among the four entities, the patient and the provider are
fully trusted because they have the original DNA data. We
assume the cloud is “honest-but-curious” because of the pos-
sible compromise caused by the system failure or hacking. At
last, we allow the authorized party to learn only the test result.
On the other hand, the authorized party must not be able to
generate any valid query request unless the request is granted
by the patient.

C. Design objective

To achieve privacy-preserving genetic testing, the core re-
quirement is that the cloud cannot deduce any useful infor-
mation about the patient’s genetic data. The requirement must
be enforced even the cloud has collected an abundance of
encrypted queries and the corresponding matching results. We
summarize the design objectives as follows.
• Data confidentiality. The cloud should not be able

to recover any useful information from any encrypted
data, which includes the encrypted genetic sequence, the
encrypted request, and the encrypted matching result.

• Trace indistinguishability. Denote the trapdoor and its
corresponding match result as a trace, the cloud should
not be able to distinguish two traces. In other words, it
is impossible for the cloud to link an encrypted request
with a previously submitted one. It is also called search
pattern privacy.

• Efficiency and usability. As genetic testing may not
require a real-time result, the computation time at the
cloud side can be tolerated in certain extend. However, the
computation at the patient and the authorized party side
must be constrained because their computation resource is
usually limited. On the other hand, the interaction among
the entities should be minimized to enjoy usability.

IV. SECURE PATTERN MATCHING

A. Scheme overview

Our main goal is to securely match one pattern to a genetic
sequence. The key idea of our scheme is to compare a
sequence pattern ∆, a gene mutation, with a target sequence
S, i.e., the patient’s DNA, in a character-by-character manner.
As the query pattern can appear at any position in the patient’s

DNA, we adopt the suffix tree structure to represent the DNA
sequence. Given a sequence S of length n, a suffix Si, 1 ≤ i ≤
n, is a subsequence of S from the position i to n. For example,
S2 of the sequence ATGC is TGC. The suffices are very useful
in subsequence matching because every subsequence of S
must be a prefix of Si,∃i ∈ [1, n]. The suffixes of S are often
organized as a tree and every edge is labeled by a subsequence
of S. The concatenation of the string-labeled edges from the
root to a leaf represents a suffix of S. To encrypt the sequence,
we utilize a predicate encryption scheme [22] which supports
a secure inner product computation between two encrypted
sequences. The encryption algorithm is based on a composite-
order of three distinct primes bilinear group. The bilinear
group is defined as follows.

Definition 2: G is a composite-order of three distinct primes
bilinear group such that

1) G and GT are two cyclic groups of finite order N = pqr,
where p, q, r are distinct primes.

2) e is a non-degenerate bilinear map e : G × G → GT ,
i.e.,
• ∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab,
• if g is a generator of G, e(g, g) is a generator of

GT as well.
3) e can be calculated in polynomial time.

To achieve secure and efficient sequence matching using PE,
there are three main technical challenges.

1) The same character has to be encrypted differently each
time to ensure indistinguishability while the different
ciphertexts of the same character have to be matched
correctly to properly perform genetic testing.

2) As most of the gene mutations are single-nucleotide
polymorphisms (SNP), the matching algorithm should
be tolerant of character mismatches to correctly handle
gene mutations.

3) The character-by-character matching results must be ag-
gregated efficiently and properly to meet the requirement
of the communication efficiency.

As the original PE in [22] does not support the character-
by-character comparison functionality, we propose our error-
tolerant character-by-character-comparison predicate encryp-
tion scheme.

B. Error-tolerant pattern matching scheme

The sequence comparison function can be expressed using
the following equation.

F =

n∑
i=1

(xi − yi)2 =

n∑
i=1

x2
i − 2

n∑
i=1

xiyi +

n∑
i=1

y2
i ,

where xi, yi > 0 are the characters of the sequences.
Following Def. 1, our scheme contains five algorithms, i.e.,

Setup, DataEnc, ReqEnc, Search, Assert.
• Setup(1λ,S) generates a public key pk = (gp, gr), a

master secret key msk = (p, q, r, gq), a pattern encryp-
tion key kT and a sequence encryption kS given the
security parameter λ. The kT = {h1,i, h2,i}ni=1, and the

kS = (gq ·R0, {H1,i, H2,i}ni=1), where n is the length of
the sequence S, H1,i = h1,i · R1,i, H2,i = h2,i · R2,i,
and R0, R1,i, R2,i,∈ Gr for i from 1 to n.

• DataEnc(kS ,S) encrypts the sequence S and generates
an assertion token ΩS . The encrypted sequence is gener-
ated as follow,

1) Randomly choose s, α, β ∈ ZN . and R3,i, R4,i,
R5,i, R6,i ∈ Gr for j from 1 to n.

2) Encrypt each
xi ∈ S

as a 4-tuple

(C1,i,C2,i, C3,i, C4,i) =

(Hs
1,i · k

α·H(xi,i)
T ·R3,i,

Hs
2,i · k

β·H(xi,i)
S ·R4,i,

Hs
1,i · k

−α·H(xi,i)
2

T ·R5,i,

Hs
2,i · k

−β·H(xi,i)
2

S ·R6,i),

where H is a cryptographic hash function.
3) Denote

S̃ = {C1,i, C2,i, C3,i, C4,i}ni=1

as the ciphertext for S.
• ReqEnc(kT ,∆) encrypts the query sequence and gener-

ates an trapdoor assertion token ΩT . Denote the character
at the wildcard positions as ?. The trapdoor is encrypted
as follow,

1) Randomly choose R7 ∈ Gr, f1, f2 ∈ Zq , and R8 ∈
Gq .

2) let ∆ = (y1, y2, · · · , ym),m = |∆|, randomly
choose r1,i, r2,i, r3,i, r4,i ∈ ZN for i from 1 to m.

3) Encrypt each yi ∈ ∆ as a 4-tuple

(T1,i,T2,i, T3,i, T4,i) =

(gr1,ip · gf1·2·H(yi,i)
q , gr2,ip · gf2·2·H(yi,i)

q ,

gr3,ip · gf1q , gr4,ip · gf2q)

if yi 6= ?. Otherwise, encrypt ? as

(T1,i,T2,i, T3,i, T4,i) =

(gr1,ip , gr2,ip , gr3,ip , gr4,ip).

Generate the trapdoor assertion token ΩT as a 2-
tuple

(R7·R8 ·
m∏
i=1

h
−r1,i
1,i h

−r2,i
2,i ,

e(gq, gq)
−(αf1+βf2 mod q)

∑m
i=1H(yi,i)

2

).

• Search(S̃, T) generates the search result γi for the ith
suffix of S̃ that starts at xi as follow
m∏
j=1

e(C1,k, T1,j) · e(C2,k, T2,j) · e(C3,k, T3,j) · e(C4,k, T4,j)

where k = i+ j − 1.
• Assert(ΩS ,ΩT ,Γ = {γi}ni=1) outputs 1 iff

e(ΩS ,ΩT [1]) · γi · ΩT [2]
?
= 1

stands for at least one i ∈ [1, n].
Discussion. In our scheme, each character is encrypted

along with a different random element each time. The in-
troduced randomness hides the relationship of the underlying
characters while has no side-effect when performing sequence
matching. We add wildcard support during query request
encryption algorithm to handle possible gene mutations. At
last, the matching result for each character is combined to a
single value to enable efficient communication. Therefore, our
scheme fulfills the technical challenges.

C. Correctness and security analysis

We show in Fig. 2 that Assert outputs 1 if and only if the
query sequence ∆ is a prefix of at least one suffix of the
sequence S.

Notice that the ?, which is the character at a wildcard
position, is encoded as 0 in the trapdoor. Therefore, the pairing
operation e(Ck,i, Tk,j), k ∈ {1, 2, 3, 4} will be 1 if jth position
of the pattern is a ?. In another word, ? matches with any
character. Thus, it achieves wildcard matching function.

The security of scheme mainly relies on the security of the
underlying predicate encryption algorithm. The security of the
predicate encryption scheme in [22] is based on the following
hardness assumption over a bilinear group.

Definition 3 (Subgroup decision problem): Given two cyclic
groups G,GT of finite order N = pqr and a bilinear map
e : G×G→ GT , we randomly choose

1) P0 ∈ Gp, R0 ∈ Gr,
2) T0 ∈ Gpq, T1 ∈ Gp,

where Gp,Gr,Gq,Gpq are subgroups of G of orders p, r, q, pq,
respectively.

Given D = (N,G,GT , e, P0, R0, Tb) where b = 0 or 1, we
define the advantage of an algorithm A to solve the subgroup
decision problem to be

AdvA = |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]|.

The assumption is that for any PPT algorithm A, AdvA is neg-
ligible in the security parameter. The hardness of the subgroup
decision problem relies on the hardness of factoring N . The
proof of the above assumption is given in [22] and we refer
our readers to that paper for more detail. As shown in [22], the
encryption scheme is an attribute-hiding predicate encryption
scheme against adaptive adversaries. Attribute-hiding means
the adversary cannot learn the message even with the secret
key as along as F (I) 6= 1, where I is the attributes. Therefore,
the encryption has two layers of protection, i.e., the secret key
and the attributes. In our scheme, we utilize the security key
as our trapdoor but with slight modification. We retain part
of the security key of the original encryption scheme as the
trapdoor assertion token and retain part of the ciphertext as the
sequence assertion token. Therefore, the secret in our scheme

Assert calculate the following equation.

e(ΩS ,ΩT [1]) · γi · ΩT [2]

=e(gsp, R7 ·R8 ·
m∏
i=1

h
−r1,i
1,i h

−r2,i
2,i) ·

m∏
i=1

e(C1,i, T1,i) · e(C2,i, T2,i) · e(C3,i, T3,i) · e(C4,i, T4,i)

=e(gsp,
m∏
i=1

h
−r1,i
1,i h

−r2,i
2,i) ·

m∏
i=1

e(Hs
1,ik

α·H(xi,i)
T R3,i, g

r1,i
p g2·f1·H(yi,i)

q) · e(Hs
2,ik

β·H(xi,i)
S R4,i, g

r2,i
p g2·f2·H(yi,i)

q)·

·
m∏
i=1

e(Hs
1,ik
−α·H(xi,i)

2

T R5,i, g
r1,i
p gf1q) · e(Hs

2,ik
−β·H(xi,i)

2

S R6,i, g
r2,i
p gf2q) · ΩT [2]

=e(gsp,
m∏
i=1

h
−r1,i
1,i h

−r2,i
2,i) ·

m∏
i=1

e(hs1,ig
α·H(xi,i)
p , gr1,ip g2·f1·H(yi,i)

q) · e(hs2,igβ·H(xi,i)
p , gr2,ip g2·f2·H(yi,i)

q)

·
m∏
i=1

e(hs1,ig
−α·H(xi,i)

2

p , gr3,ip gf1q) · e(hs2,ig−β·H(xi,i)
2

p , gr4,ip gf2q) · ΩT [2]

=e(gq, gq)
(αf1+βf2)

∑m
i=1 2H(xi,i)H(yi,i) · e(gq, gq)−(αf1+βf2)

∑m
i=1H(yi,i)

2

· e(gq, gq)−(αf1+βf2)
∑m

i=1H(xi,i)
2

=e(gq, gq)
∑m

i=1(αf1+βf2 mod q)(2H(xi,i)H(yi,i)−H(yi,i)
2)−H(xi,i)

2),

Whether the above equation results 1 is determined by
m∑
i=1

(αf1 + βf2 mod q)(2H(xi, i)H(yi, i)−H(yi, i)
2 −H(yi, i)

2 −H(xi, i)
2) (1)

Clearly, if the query sequence ∆ is a prefix of one of the suffix of the sequence S, Eq. 1 equals 0, which means the output
of Assert is 1.
Now we focus on the proof of sufficiency. Note that because H is a cryptographic hash function, the probability of
H(xi, i) = H(yj , j), i 6= j is negligible. If for i from 1 to m, H(xi, i) = H(yi, i), i.e. xi = yi, then the above equation
evaluates to 0. If there exits i ∈ [1,m], h(xi, i) 6= H(yi, i), i.e., the query sequence ∆ is not a subsequence of S, there are two
cases. If

∑m
i=1(H(xi, i)−H(yi, i))

2 6= 0 mod q, then the above equation evaluates to 0 with a negligible probability. The
other case is that

∑m
i=1(H(xi, i)−H(yi, i))

2 = 0 mod q. However, this reveals a non-trivial factor of N = pqr. Because
finding a non-trivial factor of N is hard according to the subgroup decision assumption, the probability of the second case is
also negligible. Therefore, if Assert outputs 1, the query sequence ∆ is a prefix of one of the suffix of the sequence S.
Combining the proof of necessity and sufficiency, we prove that our scheme correctly reveals the fact whether a query
sequence ∆ is a subsequence of S.

Fig. 2. Correctness proof

is the attributes which correspond to the DNA sequence and
the query pattern. Although our modification reveals part of
the secret, i.e., the trapdoor, our additional assertion step hides
the attribute evaluation from the adversary, which is the key
security property of our scheme. The security rationale behind
our scheme is that without the assertion tokens that we hide
from the adversary, distinguishing the search result reduces
to the subgroup decision problem. Therefore, our scheme is
secure against the adaptive adversary based on the security of
the predicate encryption scheme.

Trapdoor unforgeability. A trapdoor is generated for an
authorized party when the genetic test request is granted by the
patient. To forge a valid trapdoor, the authorized party must be
able to forge both the trapdoor T and the assertion token ΩT .
As T is a vector that each element corresponds to a character,
the authorized party can generate a valid T of his choice.
However, ΩT is generated through the trapdoor encryption
key kT which is kept by the patient. A single ΩT is generated
for a query sequence. Recall the trapdoor generation process,
a collection of random numbers are introduced. Intuitively,

without knowing kT , it is hard to forge a valid verification
token.

V. PERFORMANCE ANALYSIS AND EVALUATION

A. Computation complexity

Our scheme relies on the bilinear pairing operation, which
is computationally expensive. We calculate the numbers of the
multiplication as well as the exponentiation. The computation
complexity of each algorithm is summarized as follows.
• In DataEnc, the sequence encryption takes O(n) multipli-

cations and O(n) exponentiations, where n is the length
of S.

• In ReqEnc, O(m) multiplications and O(m) exponen-
tiations are used to generate the trapdoor, and O(m)
multiplication to generate the assertion token, where m
is the length of the query sequence.

• In Search, O(mn) pairings are needed.
• In Assert, one pairing and n + 1 multiplications are

required.

In summary, our scheme requires O(mn) pairings, O(n)
exponentiations, and O(n) multiplications. The dominance
of the computation is the bilinear pairing. According to the
benchmark of the public available libraries such as JPBC [23]
or PBC [24], the average time for a 1024-bit discrete log
security is 13 ms. Therefore, for a genetic sequence with five
thousand base pairs, it takes about three hours to test a query
sequence with one hundred base pairs. The computation time
is within the reasonable range in practice.

In [6], Jha et al. proposed a secure dynamic programming
scheme to compute the edit distance between two sequences.
Their scheme has three phase. Phase 0 involves no heavy
computation. In Phase 1, one player evaluates n×m instances
of Yao’s secure circuit evaluation over an equality circuit. The
other player needs to initiate n ×m × q 1-out-of-2 oblivious
transfers, where q = log |Σ| and Σ is the alphabet, i.e.,
{A, T,G,C} in our case. Phase 2 needs n × m iterations.
Each iteration involves one evaluation of an instance of a
minimum-of-three circuit and 3 log(m+n) instances of 1-out-
of-2 oblivious transfer. In summary, the scheme requires 2mn
circuit evaluations, 3mn log(n+m)+2mn oblivious transfers.
As described in [6], their scheme takes about 35 seconds to
compute for a (25 × 25) problem. Since the complexity of
their scheme is linear in nm, a (5000 × 100) problems will
take much more time.

In [5], Troncoso-Pastoriza et al. presented a finite automaton
machine based scheme to perform error resilient subsequence
testing. The key idea of the scheme is to split the inputs of
the FSM to two servers and to compute the state of the FSM
interactive protocol through secret sharing. The computation
of each iteration is small since the process only involves
a constant number of the Paillier homomorphic encryption
operations [25]. However, the number of the states of the
FSM grows as the size of the sequence, which increases
the computation overhead as well as the storage overhead to
store the transition matrix for the FSM. Additionally, it also
takes extra computation to construct the FSM for a specific
sequence.

Discussion. Among the three approaches, [5] incurs the
least computation overhead but requires a pre-process to gen-
erate the FSM. Although our scheme uses expensive bilinear
pairing operation, the computation complexity is similar to the
scheme in [6]. On the other hand, we push most of the compu-
tation to the cloud which has powerful and plenty computation
resources. Additionally, parallel computing techniques such
as MapReduce [26] can be effortlessly applied to our search
algorithm which is to compute bilinear pairing between two
characters.

B. Communication consumption

Our scheme advances the existing works in the communi-
cation complexity. Our scheme only needs one round com-
munication. The cloud returns n group elements in GT to
the authorized party. According to [27], a group of the size
128-bit over an elliptic curve is secure enough. Therefore, the

total communication to transmit the result is small, i.e., in the
magnitude of kilobytes.

The communication overhead of the scheme in [6] is high
due to the interactions in Phase 2 and the interactions of the
oblivious transfer. In Phase 0, the communication cost is (m+
n) log(m+n) bits. In Phase 1, there are n×m iterations. Each
iteration consumes 4 bits. In Phase 2, there are n×m iteration.
Each iteration contains 3 log(m + n) instances of 1-out-of-2
oblivious transfer. As shown in [6], for a (200×200) problem,
the most efficient protocol consumes more than 360 megabytes
bandwidth. Since the communication overhead is linear in the
product of the size of the sequences, i.e., mn, the bandwidth
cost will be increased dramatically.

In [5], the communication overhead comes mainly from the
oblivious transfer. There are O(mn) oblivious transfers and
O(n|Q|) ciphertext transfers, where |Q| is the number of the
state of the FSM and it is linear in n. Since the communication
complexity is the same as in [6], it implies that the scheme in
[5] will consume similar amount of the bandwidth as in [6].

Discussion. Comparing with the other schemes, our scheme
incurs much less communication overhead. Because the band-
width is more valuable in cloud computing compared with
the computation and the storage, the communication efficiency
is an important factor for the schemes to be practical. Addi-
tionally, the existing schemes are interactive protocols, which
assume the both parties, i.e., the cloud and the doctor, to
be online the entire process to participate the interaction.
However, the assumption is not reasonable in practice and
raises usability issues in the personalized medicine application
scenario.

C. Simulation study

We carry out several experiments to evaluate the computa-
tion performance of our scheme. We utilize the JAVA Paring-
Based Cryptography Library (jPBC) [23] to implement the
proposed scheme in this paper. All the experiments are con-
ducted on a laptop equipped with an Intel 2.6GHz processor
and 8GB memory. The operating system is Ubuntu 14.04. We
use the human genome data from the Ensembl project [28] in
the form of SAM files. SAM file format is one of the most
popular file formats to store genetic sequences. Each SAM file
contains short DNA sequences of which the lengths are from
hundreds to thousands of base pairs.

1) Sequence encryption cost: The sequence time for a suffix
is linear in the size of the suffix. Since there are n suffices
in a sequence of length n, the encryption cost is quadratic
in the size of the sequence S. It is worth mentioning that
the algorithm is only performed once. However, it is still
computation expensive considering that the provider may have
limited computation power. To that end, we further optimize
the process. Note that the only terms in the ciphertext involving
the input sequence is kαh(xi,i)

S , k
βh(xi,i)
T . Therefore, the other

parts of the ciphertext can be pre-computed to reduce the
computation. Meanwhile, we would like to reduce the amount
of the exponentiation by using a hash function H : Σ×Z+ →
ZN , where Σ is an alphabet for the DNA base pair, i.e.,

Fig. 3. Sequence encryption time for a suffix.

{A,T,G,C}. We can encode each letter σ in Σ to a binary
expression using a one-to-one mapping B : Σ→ {0, 1}log |Σ|.
Then the h can be

H(xi, i) = B(xi)||F (i),

where || is concatenation and F : {0, 1}? → {0, 1}l is a
cryptographic hash function such as SHA-1. The concatenation
can be expressed as an addition as B(xi) × 2l + F (i).
Because the size of the alphabet is limited, we can pre-
compute k

α·B(σ)·2l

Ind and k
α·F (i)
Ind for σ ∈ Σ, i ∈ [1, n]. Then

during the index generation process, we only need to compute
a multiplication instead of an exponentiation. We show the
optimized encryption time in Fig. 3. The pre-computation time
is shown as the red dash in Fig. 3. Note that this modification
does not affect the correctness of our scheme because h utilizes
a cryptographic hash function and is collision-free. We denote
an alphabet of size n as Σ and define the following hash
function h : Σ× Z→ ZN as

H(x, i) = B(x)||F (i) mod N, x ∈ Σ, i ∈ Z,

where B : Σ → {0, 1}logn is one to one mapping and
F : {0, 1}? → {0, 1}l is a collision-free cryptographic hash
function. We now prove h is also a collision-free hash function.

Proof: 1: We prove our claim by contradiction. We assume
the h is not a collision-free hash function. Then there must
exist x, y ∈ Σ and i, j ∈ Z such that H(x, i) = H(y, j).
Because the hash result from H is a concatenated string, we
have the following equations B(x) = B(y), F (i) = F (j).
However, because B is a one-to-one mapping and F is a
collision-free cryptographic hash function, the above equations
hold iff x = y, i = j, which contradicts with our assumption.
Therefore, h is a collision-free hash function as well.

2) Trapdoor generation cost: The trapdoor generation pro-
cess is similar to the index generation process which involves
only the multiplication and the exponentiation. The generation
time is linear in the size of the query sequence because we
encrypt each character only once. The patient can also pre-
compute part of the terms in the trapdoor to optimize the
computation. We show the trapdoor generation time for the
both approaches in Fig. 4. Note that compared with the index
generation which is run by the provider, the computation cost
of the trapdoor is more important because the process might be

Fig. 4. Pattern encryption time.

run on the user’s resource limited device. After optimization,
our scheme generates a trapdoor for a 1000-long in about 4
minutes. Since our simulation is a proof-of-the-concept, we
believe the overhead can be further reduced with the proper
implementation and optimization.

3) Pattern matching cost: The search process is the most
computation expensive algorithm due the amount of the pair-
ing operation. As analyzed earlier, for a sequence S with
length n and a query sequence with length m, the number
of the pairing computation is linear in mn. We show the
search cost in Table I when the size of S is fixed with
n = 500, 1000, respectively. As shown in the table, the
computation cost is linearly increasing on the size of the query
sequence grows. Because the running time of the problem
size (1000 × 300) takes more than 7 hours, we estimate that
value based on our observations. Although the computation
overhead seems high in our simulation, it is worth mentioning
that the cloud should have better computation power than ours.
For example, an Amazon EC2 M4.large instance which has 2
vCPU, 6.5 ECU and 8 GB memory costs 0.12$ for an hour.
The computation power of the M4.large instance is roughly
the same as our simulation platform. Therefore, the dollar
amount cost to perform a matching is very cheap compared
with most of the laboratory testings nowadays. Also, because
the matching between the query and each suffix is independent,
the computation task can be divided into multiple sub-tasks so
that a parallel processing model such as MapReduce [26] is
readily applied. On the other hand, in personalized medicine,
the search process, i.e., the diagnosis test like a blood test,
is not required to return the real-time result. Therefore, we
consider our scheme is still reasonable.

VI. CONCLUSION

Efficient secure sequence matching over the encrypted ge-
netic data is the key challenge to design practical personalized
medicine system in cloud computing. In this chapter, we
propose a novel scheme to address the unique challenge
brought by secure sequence matching over the encrypted data
in cloud computing. We achieve wildcard-based sequence pat-
tern matching through our novel modification of the predicate
encryption scheme in [22]. Our proposed scheme is provable
secure under the well-defined subgroup decision assumption.
We greatly reduce the communication overhead to O(1) round

TABLE I
PATTERN MATCHING COST IN CLOUD

Computation time (hours) Cost in dollar amount
n m=100 m=200 m=300 m=100 m=200 m=300

500 1.724 3.510 5.311 0.25$ 0.42$ 0.67$
1000 3.484 6.948 10.440? 0.42$ 0.84$ 1.2$

The number with ? is estimated value.
The dollar amount is based on the hourly rate of an Amazon EC2
M4.large instance.

compared with the existing schemes. Although the compu-
tation complexity of our scheme is similar to the existing
schemes, we further optimize our encryption algorithm to
reduce the computation overhead. Through implementation
and simulation, we show that our solution is feasible and
practical.

ACKNOWLEDGMENT

This work of Wang, Lou, and Hou was supported in part by
the US NSF under grants CNS-1446478, CNS-1405747, and
CNS-1217889. The work of W. Song was supported in part by
NSFC under grants 61202034, 61232002, and 61572378.

REFERENCES

[1] X. Zhou, B. Peng, Y. Li, Y. Chen, H. Tang, and X. Wang, “To release
or not to release: Evaluating information leaks in aggregate human-
genome data,” in Computer Security ESORICS 2011, ser. Lecture Notes
in Computer Science, V. Atluri and C. Diaz, Eds., 2011, vol. 6879, pp.
607–627.

[2] M. Gymrek, A. L. McGuire, D. Golan, E. Halperin, and Y. Erlich,
“Identifying personal genomes by surname inference,” Science, vol. 339,
no. 6117, pp. 321–324, 2013.

[3] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the 41st annual ACM symposium on Symposium on
theory of computing-STOC\’09. ACM Press, 2009, pp. 169–169.

[4] M. J. Atallah and J. Li, “Secure outsourcing of sequence comparisons,”
International Journal of Information Security, pp. 277–287, 2005.

[5] J. R. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik, “Privacy
preserving error resilient dna searching through oblivious automata,”
ser. CCS ’07. New York, NY, USA: ACM, 2007, pp. 519–528.

[6] S. Jha, L. Kruger, and V. Shmatikov, “Towards practical privacy for
genomic computation,” in Security and Privacy, 2008. SP 2008. IEEE
Symposium on, May 2008, pp. 216–230.

[7] R. Wang, X. Wang, Z. Li, H. Tang, M. K. Reiter, and Z. Dong, “Privacy-
preserving genomic computation through program specialization,” ser.
CCS ’09. New York, NY, USA: ACM, 2009, pp. 338–347.

[8] M. Blanton and M. Aliasgari, “Secure outsourcing of dna searching via
finite automata,” in Data and Applications Security and Privacy XXIV,
ser. Lecture Notes in Computer Science, S. Foresti and S. Jajodia, Eds.
Springer Berlin Heidelberg, 2010, vol. 6166, pp. 49–64.

[9] M. Chase and E. Shen, “Substring-searchable symmetric encryption,”
Proceedings on Privacy Enhancing Technologies, vol. 2015, no. 2, pp.
263–281, 2015.

[10] J. Katz, A. Sahai, and B. Waters, “Predicate encryption supporting
disjunctions, polynomial equations, and inner products,” in Advances
in Cryptology–EUROCRYPT 2008. Springer, 2008, pp. 146–162.

[11] X. S. Wang, Y. Huang, Y. Zhao, H. Tang, X. Wang, and D. Bu, “Efficient
genome-wide, privacy-preserving similar patient query based on private
edit distance,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2015, pp. 492–503.

[12] W. Lu, Y. Yamada, and J. Sakuma, “Efficient secure outsourcing of
genome-wide association studies,” in Security and Privacy Workshops
(SPW), 2015 IEEE. IEEE, 2015, pp. 3–6.

[13] Y. Chen, B. Peng, X. Wang, and H. Tang, “Large-scale privacy-
preserving mapping of human genomic sequences on hybrid clouds.”
in NDSS, 2012.

[14] P. Baldi, R. Baronio, E. De Cristofaro, P. Gasti, and G. Tsudik, “Coun-
tering gattaca: Efficient and secure testing of fully-sequenced human
genomes,” in Proceedings of the 18th ACM Conference on Computer
and Communications Security, ser. CCS ’11. New York, NY, USA:
ACM, 2011, pp. 691–702.

[15] E. Ayday, J. L. Raisaro, U. Hengartner, A. Molyneaux, and J.-P. Hubaux,
“Privacy-preserving processing of raw genomic data,” in Data Privacy
Management and Autonomous Spontaneous Security. Springer, 2014,
pp. 133–147.

[16] M. Kantarcioglu, W. Jiang, Y. Liu, and B. Malin, “A cryptographic
approach to securely share and query genomic sequences,” Information
Technology in Biomedicine, IEEE Transactions on, vol. 12, pp. 606–617,
Sept 2008.

[17] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Security and Privacy, Proceedings. 2000 IEEE
Symposium on, 2000, pp. 44–55.

[18] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public key
encryption with keyword search,” in EUROCRYPT 2004, ser. Lecture
Notes in Computer Science, C. Cachin and J. Camenisch, Eds. Springer
Berlin Heidelberg, 2004, vol. 3027, pp. 506–522.

[19] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient constructions,”
ser. CCS ’06. New York, NY, USA: ACM, 2006, pp. 79–88.

[20] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi-
keyword ranked search over encrypted cloud data,” in INFOCOM, 2011
Proceedings IEEE, April 2011, pp. 829–837.

[21] B. Wang, S. Yu, W. Lou, and Y. Hou, “Privacy-preserving multi-keyword
fuzzy search over encrypted data in the cloud,” in INFOCOM, 2014
Proceedings IEEE, April 2014, pp. 2112–2120.

[22] J. Katz, A. Sahai, and B. Waters, “Predicate encryption supporting
disjunctions, polynomial equations, and inner products,” in Advances
in Cryptology–EUROCRYPT 2008. Springer, 2008, pp. 146–162.

[23] A. D. Caro and V. Iovino, “jpbc: Java pairing based cryptography,” in
Proceedings of the 16th IEEE Symposium on Computers and Communi-
cations, ISCC 2011. Kerkyra, Corfu, Greece, June 28 - July 1: IEEE,
2011, pp. 850–855.

[24] B. Lynn, “On the implementation of pairing-based cryptosystems,” Ph.D.
dissertation, Stanford University, 2007.

[25] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in EUROCRYPT 99, ser. Lecture Notes in Computer
Science, 1999, vol. 1592, pp. 223–238.

[26] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[27] E. Barker, W. Burr, A. Jones, T. Polk, S. Rose, M. Smid, and Q. Dang,
“Recommendation for key management part 3: Application-specific key
management guidance,” NIST special publication, vol. 800, p. 57, 2009.

[28] P. Flicek, M. R. Amode, D. Barrell, K. Beal, K. Billis, S. Brent,
D. Carvalho-Silva, P. Clapham, G. Coates, S. Fitzgerald et al., “Ensembl
2014,” Nucleic acids research, p. gkt1196, 2013.

